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Abstract: This paper investigates the problem of disturbance rejection for SISO uncertain
linear minimum phase systems perturbed by an unmeasurable external disturbance under the
framework of robust output regulation. The model parameters of systems in question are largely
uncertain, including the control direction. In addition, the external disturbance is unstructured
but bounded. Towards this end, a novel Unknown Input Observer (UIO)-based regulator is
developed to reject the external disturbance, and a switching mechanism with a monitor
function is designed to handle the control direction uncertainty. Notable features are that
the unstructured external disturbance can be directly estimated and completely rejected by
a sliding mode-based observer, and this new scheme can be applied for systems with non-unity
relative degree under unknown control direction. The boundedness of closed-loop system and
its asymptotic convergence properties are rigorously proved, which is verified by a numerical

example.
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1. INTRODUCTION

The problem of tracking desired references while reject-
ing disturbances in the presence of model uncertainties
is generically known as robust output regulation, which
plays a central role through the history of control theory
(Knobloch et al., 1993) and thus can be found in myriad
engineering applications, including active rotor balancing
(Zhou and Shi, 2001), active noise cancellation (Hansen
et al., 2012) and active suspensions (Landau et al., 2005),
etc. In practice, the reference signal is usually available,
whereas the external disturbance to be rejected is more dif-
ficult to obtain, especially facing a time-varying uncertain
operating environment. In this context, this work focuses
on the more challenging task of disturbance rejection and
considers an uncertain LTI SISO system described by:

i(t) = A(p)z(t) + B(p)[u(t) +d(t)], =(0) =xzo € X

y(t) = C(p)x(t), (1)
where x € R", u € R and y € R represent the state, the
input and the output of plant (1), respectively. The initial
condition xg varies on a prescribed set X C R™. d(t) is the

external disturbance of this system, which is unknown but
assumed to be bounded.
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21YF1429600 and the National Natural Science Foundation of China
under Grant 61973236.

The control objective is then posed as designing the control
input w(t) such that all signals are bounded in closed-
loop system for any initial condition zy € X and the
output y(t) is regulated asymptotically to zero without
prior knowledge of the control direction.

Substantial studies on robust output regulation problem
have been conducted since 1970s, to begin with the cele-
brated Internal Model (IM) principle (Francis and Won-
ham, 1976), i.e., the construction of a robust regulator that
adaptively embeds the internal model of the exosystem,
and later, the regulator design has been rapidly devel-
oped to more constructive and complicated methods in
recent years, for instance, (Marino and Tomei, 2017, 2021;
Wang et al., 2018, 2020; Jafari and Ioannou, 2016; Liang
and Huang, 2021; Qian et al., 2021). However, in these
works, the prior knowledge regarding the exosystem, i.e.,
frequency, is essential to reduplicate the internal model to
solve the problem. Postulating the exosystem is unknown,
Marino and Tomei (2011)’s adaptive learning regulator
solved this problem under assumption that the system is
minimum phase with known sign of high frequency gain.
In Basturk and Krstic (2014), the problem was addressed
when only state derivatives are measured. The above tech-
niques, essentially, are suitable for systems with structured
exosystems.

In the case when the exosystem is unstructured, instead
of the aforementioned IM-based methods, the extended
state observer-based Active Disturbance Rejection Con-
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trol (ADRC) and the sliding mode-based control pro-
vide alternatives to the disturbance rejection problem.
The former suffers from the fact that stability analysis
is nontrivial while the latter features a series of mature
analysis technique but still requires some prior information
of the plant. For instance, the well-known homogenous
high-order sliding mode controller (Levant, 2003; Mercado-
Uribe and Moreno, 2020) is proposed to solve the robust
output regulation problem but the high-frequency gain
is assumed to be positive and the nonlinear function of
states is required to be bounded. Both assumptions limit
its application. To relax these assumptions, Oliveira et al.
(2015) proposed a sliding mode controller combined with
the relay period switching, but only for the system with
relative-degree-unity.

Based on above considerations, in this paper, we introduce
a novel approach to address the robust output regula-
tion problem for uncertain linear minimum phase systems
under unknown control direction, in which the external
disturbance is unmeasurable and unstructured. By means
of appropriate change of suitable coordinate, the system in
question can be reduced to a special normal form, charac-
terized by the interconnection of so-called zero dynamics
and a cascaded system. In this respect, this allows us to
resort to a controller composed of sliding mode-based Un-
known Input Observer (UIO) by Zhu et al. (2023) to reject
the unknown and unstructured disturbance. An additional
saturation function is employed to the controller such that
the finite-time convergence property of the disturbance
observer can always hold. To overcome the difficulty of un-
known control direction, inspired by Oliveira et al. (2010),
a switching scheme with monitor function is designed. We
show that after finite switching, once the control input «
is unsaturated, the output y is asymptotically regulated
to zero and states of closed-loop system remain bounded.

The main novelties lie in the followings:

1) The proposed control method does not require the
knowledge of the sign of high-frequency gain as prior
and extends Oliveira et al. (2010)’s scheme to systems
with arbitrary relative degree, which is the main
contribution.

2) The controller is model-free and robust to the uncer-
tain parameter set u which allows to be arbitrarily
large.

3) The unstructured external disturbance can be di-
rectly estimated and completely rejected by a sliding
mode-based observer.

Notations: The following notations will be utilized in
this paper: || - || represents the Euclidean norm of the
matrice or vector; For any constant matrix M € R™*"
denote Mt = max {M,0} and M~ = max {—M, 0}. Then
obviously, we have M = MT — M~ and |M|= M*+ M,
where |M| stands for a m x n matrix formed by taking
the absolute value of every element of M. A matrix or
vector M > (>, <, <) 0 means that all elements of matrix
or vector are > (>,<,<) 0 respectively. In addition,
a Metzler matrix is a square matrix whose off-diagonal
components are all nonnegative. For any constant matrix
N € R N » (%) 0 means N is positive (negative)
semi-definite, while Apax(N) and Apin(N) are denoted
as the maximum and minimum eigenvalues of matrix
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N. The solution of discontinuous differential equations is
understood in Filippov’s definition (Filippov, 2013).

2. PROBLEM FORMULATION

In this section, we first reformulate the disturbance rejec-
tion problem such that a high-order sliding mode (HOSM)-
based UIO can be employed to design a output feedback
regulator to steer the output to zero.

Plant (1) is largely uncertain in the sense that the de-
pendence of the matrices A(p), B(u) and C(p) on the
unknown parameter vector p € RP is unknown but u is
assumed to range over a given compact set, P C RP.
However, the plant is assumed to be internally stable,
robustly with respect to u € P, which is formally stated
as follows:

Assumption 2.1. There exist constants ci,co > 0 such
that the parameterized family P, (u) P — Rwm
of solutions of the Lyapunov equation P,(u)A(un) +
AT (p)Py(p) = —1,, satisfies ¢11, < Po(u) = col,, for all
weP.

Assumption 2.2. The plant in question is minimum phase
with a known relative degree r.

Remark 2.1. Assumption 2.1 is not restrictive, since there
are a large number of robust control methods such as “H,
control” (Zhou et al., 1996) and “high gain” stabilization
(Teel and Praly, 1995) to achieve such internal stability
property. Such hypothesis is assumed in rich literature (As-
tolfi et al., 2015; Marino and Tomei, 2017; Wang et al.,
2020) focusing on disturbance rejection.

Observe that, k,(u) := C(u) A" (u)B(p) # 0 stands for
the unknown high-frequency gain of plant (1). With an
invertible coordinate change defined by = — (n,§), the
plant can be transformed into its normal form (Khalil,
1996, pp.512-514) described by:

0= Ao(p)n + Bo(1)y,

é = Ac + Bekp(p)(u + d) + Bed(x, 1),

y=Cc, (2)
where n € R*™ ", & = (& --- fr)T € R", o(z,p) =
C(p)A" (u)x and the pair {A,, B,} are dependent on ,

besides the matrix A, () is Hurwitz due to the minimum
phase condition while the pair {A., B., C.} is

A — (0(r—1)><1 I(r—l)x(r—l))
c 0 b

01x(r—1)
Be=(01xe-1 1), Co=(101x(-1)).

After adding and subtracting a term 5S5;(t)u to the right
hand side of the differential equation of the last state &,
system (2) can be rewritten in a compact form:

1= Ao ()1 + Bo(p)Cek,

§= Al + Be(BSg(t)u+ Az, u, p, 1)),

Y= cha (3)
where ( is a positive constant to be determined later, and
Sq(t) is a binary signal for which a switching scheme will
be designed in the next section, to cycle through the set
{=1,1}. Note that, A is the lumped uncertainty in the
form of

Alw,u, ) = 8 p1) + (k) — BS)u + ky()d. (4)
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In what follows, the uncertain parameter vector p is
ignored for neatness when no confusion is caused.

One non-conservative assumption needs to be made first
for the state & of system (3) and the external input d:

Assumption 2.3. There exist two known constant vectors
£(0) and £(0) conforming to £(0) < £(0) < £(0) for all
zg € X and p € P. In addition, there exists a known
positive constant d for disturbance d such that |d(t)| < d.

Now, concerning the interconnected system (3), the
observer-based regulator design problem is cast as:

Problem 2.1. Suppose Assumptions 2.1-2.3 hold, design a
control law u(t) for system (3) such that the trajectories of
the closed-loop system are bounded w.r.t. any initial con-
dition zg € X and the output y of the plant asymptotically
converges to zero as time goes to infinity. N

3. CONTROLLER DESIGN

The aim of this section is to design the control law u that
solves Problem 2.1. For simplicity, the time argument has
been omitted in the sequels unless necessary. Thanks to
the controllability of the matrix pair {A., B.}, we propose
the following certainty-equivalent control law:

—KE—A
uBS,

in which é and A stand for the estimates for ¢ and A,
which will be given later by, respectively, a high-order
sliding mode (HOSM)-based observer and a novel input re-
constructor inspired by Zhu et al. (2023). The saturation
function is defined as

u =T Sat [ (5)

. xz, if |z| <1
Sat [z] = {sign(x), if |z >1 (6)
for any scalar variable x. Control gain K is chosen such

that matrix A, — B.K is Hurwitz and the selection of
positive constant @ € R will be discussed later.

3.1 High-order Sliding-mode (HOSM) Observer

In what follows, a HOSM differentiator with coefficients
being designed under the saturated control input u (5) is
proposed to achieve exact estimate of £ in a finite time.

To this end, a necessary lemma is presented:

Lemma 3.1. There exist some positive constants k1, ko, k3
dependent on u such that the lumped disturbance is
bounded, that is

Al <A

where we denote A := k17 + kod + k3 and d is the upper
bound of disturbance d. N

The proof, found in Appendix A, is established employing
Lyapunov function analysis. We conclude the following
state-dependent upper bound for rth-order derivative of
the output signal y satisfies

|§7~‘ < ksu + k2E+ ks (7)
with kg := k1 + ‘,BSq‘

In light of (7), a HOSM observer § := (él gT)T e R"
is proposed:
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éi:£i+1+19i, t=1---,r—1

& :ﬂsqu""ﬁrﬂ (8)

where v == (0y --- QT)T is generated by

ﬁi :Tiﬁﬁ ﬁi_l\%sign(ﬁi_l),i: 1, , T (9)

with 7y =y — 51, and positive tuning gains 7;, L.

Now, the finite time convergence property can be estab-
lished in the next lemma.

Lemma 3.2. Consider the HOSM differentiator (8), if the
parameters 7; are properly recursively chosen in accor-
dance with Levant (2003), and static gain £ satisfies

L > kgt + kod + ks, (10)
then, the following equations
Ei=&, i=1,---,r, Vt>T
hold for some finite time 77 > 0. N

Proof. Subtracting the second equation in (3) from (8),
the dynamics of the estimation error can be obtained as

& =&+ 1y,
gr € ﬁr + [_va ’ (11)
where (51 gT)T = §~ = éf &. Tt is shown in Levant
(2003)~that a sliding mode appears on the manifold & =
.-+ =&, =0 in a finite time by choosing the gains 7; > 0
properly and (10) is satisfied. Actually, we can always

select a sufficiently large £. In addition, the estimation
error ¢ is bounded and monotonically decreasing. g

i=1,,r—1

3.2 Interval Observer-based Estimator

To proceed, we will develop an interval observer-based
estimator for A (4) that features a finite-time convergence
property as well. Thanks to the observability of the matrix
pair {A., C.}, an interval observer for &-system (3) is
constructed as:

$=QAQ7'S+QBBSu+ Qy(y — C.Q™'F)
+ (QBC)+Z - (QBC)_ (_Z)a
$=QAQ s+ QBBSu+Qyly — CeQ'9)

+ (QBC)+(_Z) - (QBC)_Z7 (12)
in which A is determined by Lemma 3.1 and the initial
conditions are set as ¢(0) = QT£(0) — Q~£(0) and 5(0) =
Q7E(0) — Q=£(0).

Proposition 1. (Zhu et al., 2023, Theorem 2) Under As-
sumption 2.3, states of system (12) verify ¢(t) < ¢(t) < (%)
for all ¢ > 0, if the gain vector v together with matrix @

is chosen such that matrix Q(A. — vC.)Q ™! is not only
Hurwitz but also Metzler!. q

Then, thanks to ¢ < ¢ < ¢ in Proposition 1 with the fact
& = Q ', the upper and lower boundary estimates of &
can be calculated by
z —1\+= —1\—
£=(Q )" -(Q )
=@ H's- (@<
1 Readers are referred to Mazenc and Bernard (2011); TarekRaissi
et al. (2013) for concrete design procedures to derive Q, 7.

(13)
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Now, based on the sliding mode observer (8) and the
interval observer produced by (12)-(13), we are ready
to employ an algebraic unknown input reconstruction
method proposed by Zhu et al. (2023) to estimate the
lumped uncertainty A in (4). In virtue of (13), it is trivial
to check that £ < & < & holds for all ¢ > 0, which

implies 5 < & < &, there must exist a time varying
a,.(t) satlsfymg 0 < a,(t) <1 such that

b= —€)+E . (14)
Then differentiating (14) gives
=@ -€)taE—E)rE.  (15)

Denote ¢ =3 —g, A == 2A. Note that, from the second

equation of (3), we have & = BSqu + A, which together

with (15), gives
A =6, f1(<) + o fo(<) + f3(5,9) (16)
in which
[ =B Q5.
£(3) =Bl Q7' [@(4. - 1Co) @
f3(S,s) =B, (Mys — M5 + vy + Ni(—A)
and

1S +1QB| A,
- NQZ)v (17)

From (16), a re-constructor for the unknown input A in
(4) is obtained by

A =6, f1(5) + G fa(S) + f3(5,9) (18)

where &, and @&, are the estimate of ¢, and «,., respec-
tively. Due to (14), &, can be computed by

@rzm (19)
£ —¢ te

with e = 1, if £, = =, ; otherwise, € = 0.

In order to get the estimate of ¢, denoted by &, we
again resort to Levant (2003)’s second-order sliding model
observer as follows:

pr= 11,0 = —kilpr — & sign(pr — é) + pa,

P2 = —Kasign(pa — t1) (20)
where po is the exact estimate of &,, with two positive
scalar gains k; > 0,7 = 1,2 recursively chosen.

Proposition 2. Under Assumption 2.3, the estimator Ain
(18) that consists of (12), (17), (19) and (20) is able to
provide for an exact estimate of lumped uncertainty A in
(4) within a finite time, that is, there exists a time instant

T, > 0 such that the estimation error A := A — A = 0,
forall t > Ts. N

Proof. From (16) and (18), we can deduce that

= & (1) [1(S) +ar(t) f2(<)
with &, (t) = ar(t) — &, (t) and @&, (t) = & — a,. Thanks
to Lemma 3.2, the finite time convergence of £, implies
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&, = 0 for all t > Tj. Since (20) features the same
structure with (8), one can easily conclude that, after
another period of time, say ty, ¢, must converge to d..
Then, setting Tp = 11 + ty, we have A = 0 for all
t > Ty. Moreover, the estimation error A is a bounded
and monotonically decreasing signal during its transient
period, thus completing the proof. O

8.8 Switching Scheme and Monitor Function Design

Before we discuss the switching scheme on Sy, a critical
lemma is presented:

Lemma 3.3. If S, = sign(k,), there exists a constant §*
dependent on p such that for all 8 > 5%, u > d, and

]gf; 2 is bounded

Vt > Ty, the unsaturated term ug :=
as |ug| <@, that is u = uo. q

Proof can be found in Appendix B.

Remark 3.1. In fact, we can always select sufficiently large
constants 3, independent of p such that the inequalities
B > B*,u > d hold. However, to make sure (10) satisfied,
we shall select a larger constant £, which results in a
severe chattering effect of HOSM observers, and in turn,
causes a trade-off between parameter design and control
performance.

For the moment, let us suppose that the control direction
is prior known (and set Sy = sign(kp)) and select 8 >

B* w > d, the estimation errors f and A converge to zero
n a ﬁmte time and during their transient period, signals
& and A are bounded and monotonically decreasing from
Lemma 3.2 and Proposition 2. Then, according to Lemma
3.3, there exists a time instant Ty,.q < To when wug is
unsaturated, such that during t > T,eq, the closed-loop
system of (3) in the form of

n\_[Ae B.C. n 0 0) (¢
()05 () B) (5) e
is ISS with decaying input 5 and A. Besides, the Lyapunov

equation (A, — B.K)"P: + P:(A. — B.K) = —1, has a
symmetric and positive definite solution P%.

Then, define the Lyapunov candidate function V, =
V& PeE, its derivative along the solution of (21) satisfies

. 1
< -
V2 - 2>\maX(P§)VY2
1 ~ -
+ =P BK||[[¢]| + |1 Pe B[l |All), £ € [ti, +00)
Arnin(jjf)

for any t; € [Tined, +00). Hence, utilizing the comparison
lemma (Khalil, 1996) and the fact y = C.&, it follows

ly(t)| < II(t), (22)
() = [y(ts)le” P L), t € [ti, +00)
with 7(t) := @1 (£(0),t) + P2(A(0),t) and &y, Py € KL.

In this context, the major problem is that the sign of k,
in question is unknown, however, in light of the norm
bound for y given in (22), we are able to construct the
monitoring function ¥, inspired by Oliveira et al. (2010).
Based on Lemma 3.3, the inequality (22) holds when S,
is chosen correct (S, = sign(kp)), while y stays bounded
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when the selection of S, is incorrect. It’s natural to use
IT in (22) as a benchmark to decide whether a switching
of S; is needed, i.e., the switching occurs only when
(22) is violated. Nevertheless, since IT is not available for
measurement we consider the following function, defined
in the interval [tx, tx+1), to replace IT:

Ue(t) = ly(te)le =) + O(k)e ! (23)
where we select a sufficiently small positive constant A,
and A, such that A, < m holds. The switching
time ¢y sets the change of S;, thus cycling through the set
{—1,1} and O(k) is any positive monotonically increasing

unbounded sequence. The monitoring function ¥,, can
thus be defined as

U, (t) :=W(8), tE [tr,trt1) C [0, +00). (24)
Note that from (23) and (24), one can derive |y(tx)| <
Ui (ty) at t = tg. Hence, if the monitoring function ¥,,(t)
is equal to |y(t)|, a switching will occur, that is
Sq(tr+1) = —Sq(te),
tee1 = min {t > & : ly(t)| = ¥ (t)}, (25)
where t; is the switching instant, £ € {0,1,---} and
Sq(to) = 1 with tg = 0. From (24), it is trivial to obtain
the following inequality:

ly(t)| < ¥ (),
4. STABILITY ANALYSIS

Vt € [0, +00). (26)

The main result is at present stated:

Theorem 3. Suppose Assumptions 2.1-2.3 hold, for plant
(1) that can be transformed into its normal form (3), the
controller (5) composed of HOSM estimators (8) and (18)
and the monitoring function (23) and (24) fulfilling (10)
and inequalities 8 > B*,u > d, is able to stabilize the
system and reject the unknown disturbance d in the sense
that, for any initial condition zy € X, the trajectories of
closed-loop system are all bounded and tlggo y(t) = 0, the

problem of output regulation is solved. N

Proof. The proof is carried out in three parts:

1) The Monitoring Function Switching Stops:

Suppose by contradiction that S, in controller (5)
switches without stopping V¢ € [0, +00). Then, O(k)
in (23) and (24) increases unboundedly as k — +o0.
Thus, there exists a finite value k such that for k > &,
we have: i) the term ©(k)e=*¢! will upper bound
m(t) in (22), thus ¥, (t) > II(t),Vt € [tk, trt1), with
IT in (22); and ii) S, coincides with the sign of k,,
together with (10) and inequalities § > f*,u > d
satisfied, the inequality (22) holds under Lemma 3.3,
thus IT is a valid bound for |y|. Hence, no switching
will occur after ¢ = t, ie, tx41 = 400, which
leads to a contradiction. Therefore, ¥, in (24) has
to stop switching after some finite time £ = N and
tn € [07 +OO)

2) Ultimate S, Selected is such that S, = sign(k,):

Observe that if S, is chosen correct, all trajecto-
ries of the system converge to zero, otherwise, for
any initial condition the system trajectories do not
converge to the origin. This is a contradiction, since
if the switching stops, as aforementioned, the output
must converge to the origin. Thus, the ultimate S,
selected is such that S, = sign(ky).
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3) Closed-Loop Signal Boundedness and Exponential
Convergence:

Since the switching stops and ¥,, converges to
zero exponentially, then, one concludes that y and
states n, & will converge to zero at least exponentially.
Reminding that u is bounded, then with Assumption
2.1, we can conclude that all closed-loop system
signals are all bounded as well.

5. SIMULATION

In this section, consider a second-order minimum phase
system described by

5
- if t€]0,30
Gs)={ #+3s+10" 0.30)
31100 1t=30
under the effect of a sinusoidal external disturbance
d(t) = 2sin(3t), if te€0,15)
T ] 5sin(t—1). if ¢>15

All parameters of the system are unknown, including the
control direction, only the output signal y is available to
controller design. The input disturbance d is bounded by
d = 5. In this case, the proposed controller (5) with the
switching mechanism is designed as follows:

The parameters utilized in the developed controller are
set to u = 30, 8 = 1, and the feedback gain vector
K is designed to place the eigenvalues of A, — BoK in
—1,—2. The tunning gains in HOSM observer (8) and
(20) are selected as £ = 60,77 = 1.5, = 1.1 and
K1 = 2.12, k2 = 2.2 respectively. The parameters of the

interval observer (12) are selected as v = (17 52)—r and
0.2500 —0.0625

the transformation matrix Q = (0 1538 —0.0118

) employed

in (12) is chosen so that

QA -1CQ " = (4 1)

is a Hurwitz and Metzler matrix verifying the condition in
Proposition 1. The initial condition of the plant is set as:

z(0) = (-1 Z)T, while the HOSM observers in (8) and (20)
are initialized with £(0) = (0 0)", p1(0) = 0.5, p2(0) = 0.
Thus, according to Assumption 2.3, the initial value of
interval observer (12) can be chosen as £ = (1 8)T and

£=(-120)".

The monitor function ¥, is obtained from (23) and (24)
with ©(k) =k + 1, A\e = A\, = 0.3.

Simulation results are shown in Figs. 1-3. At first 30
seconds, the switching signal S, is initially set to 1 that
is opposite to the sign of k,. Thus the essential conditions
in Lemma 3.3 are not satisfied, resulting in u saturated
at the first 0.2 seconds. However, with the finite-time
convergence of estimate error £ to zero in Fig. 3 and
the fact that S, goes through one necessary switching to
reach the correct value in Fig. 2, control input u, once
unsaturated, compensates for the unknown disturbance d
and the output of plant (1) is regulated very quickly to
zero in Fig. 1. After 30 seconds, a sudden change of sign
of high frequency gain occurs. To be notable, similar to
former results, after a finite time switching in Fig. 2, the



4568

external disturbance is completely rejected and the output
converges to zero in a short time in Fig. 1, which explicitly
shows the effectiveness of our control scheme.

As depicted in Fig. 1, another remarkable feature enjoyed
by the proposed method is demonstrated via the transient
behaviour around 15s, at which the frequency of external
disturbance undergoes an abrupt change. From the mag-
nified plot in Fig. 1, y goes back to zero after a small
oscillation while the input u tracks the new disturbance
instantaneously. Certainly, after the output being regu-
lated to zero, one can obtain the frequency information
applying many existing parameter estimation techniques
to the control signal u(t).

> 0 B ..‘.‘K W
= 0
2 gl J
= 6 -0.04\/—
S - 2 —y(t)
12 . . . .
0 10 20 30 40 50
Time(sec)
30 T T T
E 0 L
=
< .30 y
3 0 ——u(t)
-60E 1 15, 154 4 ! .
0 10 20 . 30 40 50
Time(sec)

Fig. 1. Trajectories of inputs and output of system (1).

= ' ' ' I=rol
FE 10 _\Ilm(t)
st 1
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0 10 20 30 40 50
= Time(sec)
5 1 f :
[
o gl
E 1 i 30 30.5 H _Sq(t) i
a0 10 20 30 40 50

Time(sec)

Fig. 2. Switching signal S, and switching scheme with
monitoring function (24).
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Fig. 3. Time history of estimate error £ (11).

6. CONCLUSIONS

In this paper, a novel UIO-based regulator is proposed to
solve the output regulation problem for uncertain SISO
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linear minimum phase systems with arbitrary relative de-
gree under unknown control direction. It is shown the re-
sulting closed-loop system enjoys asymptotic stability and
the unstructured disturbance can be completely rejected.
The simulation results are consistent with the theoretical
results and show the control objective is achieved by the
proposed scheme. The future investigation should include
the removal of minimum phase requirement and extension
to MIMO systems, which is an intriguing challenge.

REFERENCES

Astolfi, D., Praly, L., and Marconi, L. (2015). Approx-
imate regulation for nonlinear systems in presence of
periodic disturbances. In 2015 54th IEEE Conference
on Decision and Control (CDC), 7665-7670.

Basturk, H.I. and Krstic, M. (2014). State derivative
feedback for adaptive cancellation of unmatched distur-
bances in unknown strict-feedback 1ti systems. Auto-
matica, 50(10), 2539-2545.

Filippov, A.F. (2013). Differential equations with dis-
continuous righthand sides: control systems, volume 18.
Springer Science & Business Media.

Francis, B. and Wonham, W.M. (1976). The Internal
Model Principle of Control Theory. Automatica, 1098,
457-465.

Hansen, C., Snyder, S., Qiu, X., Brooks, L., and Moreau,
D. (2012). Active Control of Noise and Vibration,
Second Edition. Crc Pr I Llc.

Jafari, S. and Ioannou, P.A. (2016). Robust adaptive at-
tenuation of unknown periodic disturbances in uncertain
multi-input multi-output systems. Automatica, 70, 32—
42.

Khalil, H.K. (1996). Nonlinear Systems. Prentice Hall.
Knobloch, H.W., Flockerzi, D., and Isidori, A. (1993).
Topics in Control Theory. Birkhduser Basel, Basel.
Landau, I.D., Constantinescu, A., and Rey, D. (2005).
Adaptive narrow band disturbance rejection applied
to an active suspension - An internal model principle

approach. Automatica, 41(4), 563-574.

Levant, A. (2003). Higher-order sliding modes, differentia-
tion and output-feedback control. International Journal
of Control, 76(9-10), 924-941.

Liang, D. and Huang, J. (2021). Robust output regulation
of linear systems by event-triggered dynamic output
feedback control. IEEE Transactions on Automatic
Control, 66(5), 2415-2422.

Marino, R. and Tomei, P. (2011). An adaptive learning
regulator for uncertain minimum phase systems with
undermodeled unknown exosystems. Automatica, 47(4),
739-747.

Marino, R. and Tomei, P. (2017). Hybrid Adaptive Multi-
Sinusoidal Disturbance Cancellation. IEEE Transac-
tions on Automatic Control, 62(8), 4023-4030.

Marino, R. and Tomei, P. (2021). Adaptive output regula-
tion for minimum-phase systems with unknown relative
degree. Automatica, 130, 109670.

Mazenc, F. and Bernard, O. (2011). Interval observers for
linear time-invariant systems with disturbances. Auto-
matica, 47(1), 140-147.

Mercado-Uribe, J.A. and Moreno, J.A. (2020). Discon-
tinuous integral action for arbitrary relative degree in
sliding-mode control. Automatica, 118, 109018.



Yizhou Gong et al. / IFAC PapersOnLine 56-2 (2023) 4563—4569

Oliveira, T.R., Peixoto, A.J., and Hsu, L. (2010). Sliding
mode control of uncertain multivariable nonlinear sys-
tems with unknown control direction via switching and
monitoring function. IEEE Transactions on Automatic
Control, 55, 1028-1034.

Oliveira, T.R., Peixoto, A.J., and Hsu, L. (2015). Global
tracking for a class of uncertain nonlinear systems with
unknown sign-switching control direction by output
feedback. International Journal of Control, 88, 1895—
1910.

Qian, Y.Y., Liu, L., and Feng, G. (2021). Event-triggered
robust output regulation of uncertain linear systems
with unknown exosystems. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 51, 4139-4148.

TarekRaissi, Efimov, D., and Zolghadri, A. (2013). Interval
State Estimation for a Class of Nonlinear Systems. IEEE
Transactions On Automatic Control, 23(2), 383-394.

Teel, A. and Praly, L. (1995). Tools for semiglobal
stabilization by partial state and output feedback. STAM
Journal on Control and Optimization, 33(5), 1443-1488.

Wang, Y., Pin, G., Serrani, A., and Parisini, T. (2018).
Switching-based sinusoidal disturbance rejection for un-
certain stable linear systems. In 2018 Annual American
Control Conference (ACC), 4502-4507.

Wang, Y., Pin, G., Serrani, A., and Parisini, T. (2020).
Removing SPR-like conditions in adaptive feedforward
control of uncertain systems. IEEFE Transactions on
Automatic Control, 65(6), 2309-2324.

Zhou, K., Doyle, J.C., and Glover, K. (1996). Robust and
optimal control.

Zhou, S. and Shi, J. (2001). Active balancing and vibration
control of rotating machinery: a survey. Shock and
Vibration Digest, 33(5), 361-371.

Zhu, F., Fu, Y., and Dinh, T.N. (2023). Asymptotic
convergence unknown input observer design via interval
observer. Automatica, 147, 110744.

Appendix A. PROOF OF LEMMA 3.1

With the fact that u € L, we are able to prove A defined
in (4) belongs to L as well.
Define the Lyapunov function V; = x " P,x, the derivative
V1 along the trajectory of (1) is

= —||x||2 + 22" P,B(u + d)

Vit

<Vt HIRBI@ED) (A

where d is the upper bound of disturbance d and here we
exploit Rayleigh’s inequality cl||xH2 <V <collz|*

1 .
Let W1 = ‘/127 then W1 =
(A.1) into 2W7, one obtains

3 W Dividing both side of

. 1 1 —
W, < ——W; + —||P.B|(u+qd).
P v L (CR)

By Comparison Principle (Khalil, 1996) it follows that

(A.2)

202

NG

Then, from Rayleigh’s inequality, W7 > ./ci]|z| and
W1(0) < /c2]|z(0)], it follows that

Wy < e 7' Wi (0) — —2||PBl|(e %2 — 1)(T + d).

4569

262

]l < \/\/;e =3 2(0 M=~ I1P=Blle = 1)(@+ d)

<Ore 7 L 0y(atd ), (A.3)
with
C 2¢c 2¢c
6, ZQII (0 )II—JIIP Bl|(u+d), 6;:= JIIP B

NG
Recalling A = CA"z + (k)
compute its bound

|A| < 03¢ %3" + 0,7 + 054,
with 03 = ||CA"||61,04 = ||CA"||02 + |k, — 8S,|,05 =
|CA"||62 + |kp|. In this respect, it is shown the lumped

uncertainty A is norm-bounded by ki@ + kod + k3, with
kl = 04, kg = 05, kg = 93. O

— B8S4)u + kpd, we are able to

Appendix B. PROOF OF LEMMA 3.3

Since we set the saturation function for control input (5),
the finite-time convergence property of Lemma 3.2 and
Proposition 2 always holds, i.e., £ — 0, A — 0 after t > Tb.
For simplicity of analysis, here we denote 3, := 85, and
—Ké-A

Bq

replace £ and A in ug =

First postulate the input of plant (1) is @ + d. It’s trivial
to compute the solution of a:( ) ib

z(t) = e (0) + A~ e —1)B(T + d) (B.1)
Due to & = Cz,& = CAx, -+ & = CA" !z, one obtains
E(t) = Cue™z(0) + CuA™ (™ —T)B(@+d), (B.2)
with C, = (€T .-+ (A7) .
Now from (B.1) and (B.2) it follows that
Ké+A K¢ CA™w @17

P e N 7
= e 2(0) + 67N B(T + d) — gC’aAle(ﬂJra) -
q

where we make use of k, = CA" !B, and denote 05 :=

KOACA and 7 = %WA”
with CA'B =0,Vi =0,1,--- ,r — 2, one can derive
K CA™'B
ECQA*B =k 5 (B.3)

where k, is the first element of control gain vector K,
which is positive, due to (A. — B.K) designed being
Hurwitz. Moreover, —CA™1'B is the DC gain of plant
(1), equal to kpfs(u), in which fg is a positive constant
depending on uncertain parameter set p.

Thanks to (B.3), the signal ug in the form of
_ k _
Ose 2 (0) + 07 B(u + d) + klegﬁ—p(a +d)—u (B.4)
q

with two exponentially decaying terms will eventually
norm-bounded by @ if the following equality is satisfied
sign(8,) = sign(k,),

which indicates

Sy = sign(k,). (B.5)
Moreover, if we design § such that g > [*, for some
positive constant 8* := %lk”l and @ > d. Then, |ug| < 7,
thus ending the proof.



